SIMULATION OF PUNCHING FAILURE IN
REINFORCED-CONCRETE STRUCTURES

By P. Menétrey,' R. Walther,” T. Zimmermann,® K. J. Willam,* and P. E. Regan®

ABSTRACT: A numerical model has been developed to reproduce the punching failure in reinforced-concrete
structures. It is characterized by an efficient triaxial strength criterion for concrete, a nonassociated flow rule
reproducing the concrete dilatancy observed experimentally, and a cracking model accounting for the brittleness
of concrete failure under various states of stress. The simulation of punching failure in a circular slab is suc-
cessfully performed as the localized mode of failure—characterized by an inclined crack—is reproduced. It is
shown that punching failure is initiated by the coalescence of microcracks inside the slab, followed by a crack
propagation towards the corner of the slab-column intersection. A parametric analysis of the punching failure
demonstrates that (1) punching failure is due to tensile failure of concrete along the inclined punching crack
and is not due to compressive failure; (2) increasing the percentage of reinforcement reduces the state of internal
cracking resulting in an increase of the failure load and a reduction of the ductility; and (3) the size effect
observed experimentally is reproduced and a size-effect law is proposed.

INTRODUCTION

Reinforced-concrete slabs supported on columns fail by
punching when a column suddenly perforates the slab with the
formation of a conical plug of concrete. A review of this fail-
ure phenomenon has been presented by Regan and Braestrup
(1985). The approach adopted here is concerned with the fi-
nite-element simulation of this failure mechanism using a tri-
axial concrete formulation.

Punching failure in reinforced-concrete slabs under dynamic
impacts or under static loading was simulated with different
concrete models in which the size effect was usually neglected.
The first attempt to apply fracture mechanics to punching fail-
ure is reported by De Borst and Nauta (1985). A model han-
dling nonorthogonal cracks was used and the predicted behav-
ior approached experimental results. However, the tangential
cracks spread and no localized punching mode was generated.

The finite-element simulation of punching failure in rein-
forced-concrete structures is a promising approach that should
provide new insight into the failure mechanism. To reproduce
more closely the punching failure process, a review of the
experimental tests published in the literature was performed,
leading to the following requirements for the numerical model:

1. The punching failure involves tangential cracks as well
as radial cracks. Consequently the numerical model must
be able to manage these two types of cracks.

2. Shear and flexural effects interact and cannot be consid-
ered separately. Consequently, a continuum model should
be developed as opposed to a structural one.

3. Punching failure is a highly localized failure and is not
a diffuse failure. Therefore, the numerical model should
capture strain localization.
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4. Punching failure exhibits size effects that can be properly
accounted. for by nonlinear fracture mechanics concepts.
5. The influence of flexural reinforcement is prominent.
Therefore, a discrete idealization of the reinforcement, as
opposed to embedded composite models, should be con-
sidered so that yielding and debonding can be captured.

After conducting this review, it appeared that the following
assumptions were appropriate and, therefore, are adopted here:
(1) punching failure is a three-dimensional failure phenome-
non that may be simulated as axisymmetric; and (2) the dowel
action (shear resistance transferred by reinforcing bars
crossing a concrete interface), which influences the response
of reinforced-concrete slabs near the peak load, can be ne-
glected.

A numerical model that satisfies these requirements is de--
rived in the next section. In the third section, the punching
failure mechanisms are investigated. In the fourth section, a
parametric analysis of punching failure is presented. Further
details are given in Menétrey (1994).

NUMERICAL MODEL
Preliminaries

The reinforced-concrete behavior is described at the consti-
tutive level within the framework of the indremental flow the-
ory of plasticity [see e.g., Chen (1982)], assuming that the
elastic and plastic strain increments are uncoupled: Ae = Ae,
+ Aeg,. The actions of steel reinforcement and concrete are
uncoupled. The steel model is characterized by a bilinear
stress-strain response and a symmetric response under tension
and compression.

Concrete Failure Criterion

The concrete failure criterion is necessary to describe
punching failure as mentioned by Moe (1961). An appropriate
triaxial strength criterion developed by Menétrey and Willam
(1995) is used here to reproduce the various states of stress
characterizing punching failure. It is expressed in terms of the
three invariants /I, I, and I, [hydrostatic, deviatoric invariant,
and polar angle of Haigh-Westergaard, see e.g., Chen (1982)]
of the stress tensor o as

p

Ty IA L1
fdy I, 1) = [V 1.5 .E] + ¢ [\/—_ch r(ls, ) + _—\/Sfc] c=0
1



ossio loading path for unlaxial fe
ﬁ,“;"ﬁﬁi'm n compression
Yo
traction :
meridlen —
plastic flow
direction
loading path for
plastic potential uniaxial traction
rey
| lon 1
! apex fe

1

FIG. 1. Concrete Failure Criterion, Plastic Potential, Plastic
Flow Direction, and Grey Region in the Meridian Plane

where f, = uniaxial compressive strength. The cohesive param-
eter is set to ¢ = 1 and the friction parameter is ¢ = 3[(f? —

) f.f)e)(e + 1)] where f, =uniaxial tensile strength. The
elliptic function r(ly, €) is based on the five-parameter model
by Willam and Warnke (1974)
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The parameter e describes the out of roundness of the devia-
toric trace, which is expressed as the limit of the ratio of the
tensile meridian (/, = 0) over the compressive meridian (/, =
7/3) as I, tends to 0. Convexity and smoothness of the elliptic
function require that 0.5 < e =< 1. One singular apex, if ¢ >
0, is located at: [/, = (c\/gfc)/d), I, = 0]. The failure criterion
in the meridian plane along the tensile (I, = 0) and the com-
pressive (I, = w/3) meridians, as well as the apex, are shown
in Fig. 1.

"(Iey e) =

Concrete Flow Rule

The evolution of plastic deformation is described with a
flow rule derived from the plastic potential g such that: Ae, =
Aydg/da (Ay = plastic multiplier; and 9 = partial derivative).
The plastic potential, which was appropriated to simulate
punching failure is expressed as

g, I) =I* + BI, + CI, 3)

where parameters B and C outline the axisymmetric shape as
presented in Appendix I. The plastic potential satisfies the fol-
lowing two conditions: (1) for uniaxial tensile test, the flow
direction corresponds to the loading path for uniaxial tension
(this condition reproduces, during the uniaxial tensile test of
a plain concrete specimen, the elastic unloading in the radial
direction observed experimentally); and (2) at the uniaxial ul-
timate compressive strength, the flow direction is given by the
dilatancy angle ., introduced as a new material parameter.
These two conditions are presented in Fig. 1.

The shape of the plastic potential is circular in the deviatoric
plane, which corresponds to a nonassociated flow rule except
if e = 1. This assumption, which simplifies the formulation
and facilitates the stress computation, is neither contradicting
nor reproducing experimental results, as very few are availa-
ble.

The apex of the failure criterion results in a grey region in
the stress space where the stress return algorithm is not de-
fined. This grey region is illustrated in Fig. 1 and is delimited
by the condition
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If the stress state is located in the grey region, it is returned
to the apex of the failure criterion.

Concrete Cracking

The concrete cracking phenomenon is described with Fhe
smeared-crack model using the strain-softening formulation
that refers to a gradual decrease in tensile strength with ad-
ditional deformation. The fictitious crack model developed by
Hillerborg et al. (1976) is considered, in which the tensile
stress g, is controlled by the crack opening w. The amount of
énergy per unit area absorbed in opening a crack from zero to
the crack rupture opening w, is

G = f o, dw &)
0

defining the fracture energy, which is considered a material
property. .

The gradual decrease in tensile strength with additional de-
formation is controlled by a smooth exponential degradation
of the cohesive parameter in order to fit the tensile experi-
mental data, which dominates the postpeak response of con-
crete, so that

c=j'7'=exp (—5 —;}%) ©)

f

The cohesive parameter is uncoupled in the expression of the
concrete failure criterion given in (1), resulting in an isotropic
loss of strength due to reduction of the cohesion. For ¢ = 1,
the material is intact, and for ¢ = 0, the material is considered
to be completely fractured exhibiting only a residual frictional
strength.

The fracture energy must be invariant with the finite-ele-
ment size. Therefore, mapping between the crack opening w
(used for the definition of the constant fracture energy) and
the cracking strain €, (used at the constitutive level) leads to
the definition of the finite-element size ° normal to the crack,
so that w = k%, following the idea of the crack band model
by BaZant and Oh (1983). The simulation of localized failure,
like punching failure, requires this dependence on finite-ele-
ment size, which plays the role of localization limiter.

The punching-failure process is characterized by distinct
states of stress for which different brittlen€ss behaviors are
associated. These different brittleness behaviors are included
in the model by considering the number of microcracks formed
in a specimen, following the experimental observations that
splitting in compression, as well as shear, results from various
microcracks. The analytical formulation of the fictitious num-
ber of cracks N is derived based on the following experimental
observations: (1) the uniaxial tensile ([, = f£/V3,1I, =

2/3f, I, =0) and the triaxial extension tests (J; =
V/3f, I, = I, = 0) are characterized by one single crack; (2)
the uniaxial compressive test (I = —£./\/3, I, = \/2/3f,, I, =
7/3) is characterized by N, cracks (introduced as a new ma-
terial parameter); and (3) the biaxial compressive test I =
~2£,/N/3, 1, = \/203f,., I, = 0), (f;. = equibiaxial compres-
sive strength) is characterized by one crack. For punching fail-
ure simulation, the reproduction of the biaxial compressive
state of stress is determinant, as is observed at the corner of
the slab-column intersection. The analytical expression of the
fictitious number of cracks includes the polar angle I, in order
to distinguish between the localized failure, along the tensile
meridian, and the distributed failure along the compressive
meridian. The fictitious number of cracks is expressed in terms
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of the ratio I./I, so that it remains constant during proportional
unloading. The fictitious number of cracks is written as

1
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so that the three previously mentioned observations are satis-
fied.

The combination of radial -and tangential cracks is ac-
counted for in an average form by computing the increment
of the crack opening Aw as the positive norm of the plastic
strain ||(Ae,)|| (being the internal variable), where ||| denotes
the square norm, and () are the Macauley brackets, which ex-
tract the positive components so that (x) = \/0.5(x; + |x;|)x;

The increment of the crack opening is consequently expressed

as
R4
do

where Ay = plastic multiplier.

The stiffness degradation due to cracking is assumed to oc-
cur only in the softening range of the response. The elastic
constitutive matrix is modified isotropically with a degradation
of the initial Young’s modulus E, so that

E = cE, ©)

Aw = I*Ay ®)

L
N

For a completely damaged material (¢ = 0) Young’s modulus
is reduced to zero. This model corresponds to an isotropic
damage model and was shown to be necessary to capture the
punching failure mechanism.

Numerical Implementation

The stress integration algorithm is based on the elastic-pre-
dictor, plastic-corrector strategy. The elastic-predictor step is
elastic, and the plastic corrector step is evaluated with the cut-
ting plane algorithm developed by Ortiz and Simo (1986). A
relaxation method is coupled with the cutting-plane algorithm
to avoid a situation in which the stress point is returned ac-
cidentally inside the elastic domain due to the exponential de-
cohesion process.

Circular reinforced-concrete slabs that are modeled with
four-node quadrilateral axisymmetric elements (quadaxi) are
considered. The regularization parameter of the quadaxi (h°),
which appears in the softening formulation, is the square root
of the cross-sectional area so that the radial direction is not
taken into account. This results in a constant crack spacing
along the perimeter as observed in punching failure experi-
ments.

Mesh locking occurs as a result of near incompressibility.
For the developed concrete constitutive model, the flow rule
often allows for only small volume changes, so if plastic
strains become large, the response becomes nearly incompress-
ible. This difficulty is overcome by the treatment developed
by Hughes (1980) using the mean-dilatation formulation.

The nonlinear solution is advanced in incremental load steps
and requires iterations. A modified Newton-Raphson algorithm
is implemented with a special strategy adapted to capture lo-
calized failure so that (1) the predictor iteration is elastic in
order to facilitate unloading; (2) the corrector iteration is elas-
tic for a certain number of converging iterations (norm of the
out-of-balance force is reducing) and only after these elastic
iterations the corrector iteration is plastic; and (3) the corrector
iteration is elastic as soon as divergence of the norm of the
out-of-balance force is detected.
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The damaged elastic constitutive matrix is assumed constant
during a load step and is computed at the previous converged
step (not at the previous iteration). This has the advantage that
no coupling between elastic degradation and plastic softening
has to be considered. However, small load steps are required.

PUNCHING FAILURE MECHANISMS
Description of Test Problem

The circular slab tested by Kinnunen and Nylander (1960)
and reinforced with ring reinforcement (denoted by IB15a) is
simulated because of its perfect axially symmetric geometry.
It has a total diameter of 1,840 mm and a thickness of 150
mm. Experimentally, the load is applied to the column (150
mm in diameter) by means of a hydraulic jack and transferred
to the floor by means of tie rods along a radius of 855 mm.

The finite-element mesh used for the simulation is chosen
such that the punching crack is aligned with the mesh without
predefining its orientation. The mesh is refined around the cor-
ner of the slab-column intersection. The load is applied by
controlling the vertical displacement to follow an eventual
softening response.

The concrete is characterized by a mean compressive
strength on the cylinder of f, = 28 MPa. The tensile strength
is obtained based on the following relation:

fi=033f7 (10)

which results in a direct tensile strength of f; = 3 MPa. The
fracture energy —according to the CEB-FIP model code (CEB
1990)—depends on the maximum aggregate size (32 mm) and
on tensile strength so that G, = 120 N-m/m® The following
parameters are assumed: (1) Young’s modulus E, = 25,000
MPa; (2) Poisson’s ratio = 0.2; (3) the number of cracks in
compression N, = 10; and (4) the dilatancy angle is at the
ultimate uniaxial compressive strength s, = 10°. The reinforce-
ment is made of Swedish Kam steel-ribbed bars 12 mm in
diameter, which are characterized by Young’'s modulus of
210,000 MPa and a uniaxial yield strength of 450 MPa. The
hardening modulus is assumed to be 10,000 MPa. The posi-
tions of the ring elements are approached so that they are
located at the nodes of the concrete finiterelement mesh.

Punching Response of Slab

The response of the slab is illustrated in Fig. 2 where the
load-displacement curve of the point located at the perimeter
of the slab is presented. The predicted punching load (202 kN)
agrees with the experimental failure loads %188 and 208 kN).
The numerical simulation does not reproduce the five horizon-
tal branches monitored experimentally due to pauses during
the load-controlled test without closed-loop systems. This im-
plies that the numerical model predicts a stiffer response than
the one monitored experimentally.
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FIG. 2. Experimental and Numerical Responses of Slab with
Ring Reinforcement



The deformed mesh of the simulated slab is shown in Fig.
3. A punching mode of failure is reproduced for which the
deflections are localized along an inclined band of element.

Cracking Phenomenon

The punching failure simulation illustrates the cracking
phenomenon in the vicinity of the column as shown in Fig. 4

£y

for three load steps. The tangential cracks appear if the prin-
cipal strains are larger than the rupture deformation in uniaxial
traction f//E, The tangential cracks are symbolized by a
straight line, the length of which is computed based on the
cohesive parameter and the size of the finite element such that
crack length = 0.334°(1 — ¢). The crack orientation is similar
to the principal strain orientation. A stress-free crack is sym-

3.7 mm

FIG. 3. Deformed Mesh of Slab after Punching Failure

FIG. 4. Tangential Cracks for Three Values of Vertical Displacement: (1) 3.1 mm; (2) 3.2 mm; (3) 3.3 mm

JOURNAL OF STRUCTURAL ENGINEERING / MAY 1997 / 655



bolized by a thicker line and is represented if ¢ < 0.007 (cor-
responding to w > w,).

Fig. 4 shows that, for a vertical displacement of 3.1 mm
corresponding to a stress-free tangential flexural crack opened
through half the slab thickness, the first inclined stress-free
crack appears inside the slab thickness, just below the rein-
forcement. The numerous microcracks located around the
stress-free crack are closing at that time. The punching crack
is initiated by microcrack coalescence at the top of the slab.
This coalescence phenomenon is justified experimentally by
the tests of Regan (1983), who reported that microcracks are
formed across the slab thickness before failure occurs, and
Moe (1961), who observed the formation of inclined cracks
across the slab thickness before failure occurred. By increasing
the vertical displacement, this inclined crack expands toward
the corner of the slab-column intersection. Most of the other
inclined microcracks are closing at the same time. At failure,
the punching crack has reached the corner of the slab-column
intersection. The punching crack orientation is close to the
experimental one except at the top of the slab. Consequently,
punching failure that is initiated by microcrack coalescence is
followed by a crack propagation.

The BaZant (1992) suggested that punching failure results
only from crack propagation, but the proposed direction of
propagation is contrary to the one observed here, as the punch-
ing crack is propagating from the upper part of the slab to the
bottom.

The formation of radial cracks is well captured by the finite-
element model, because the cracks expand towards the extrem-
ity of the slab for low load levels as observed experimentally.
The main sequence of punching failure mechanisms is con-
sequently reproduced.

PARAMETRIC ANALYSIS

Punching Failure in Slab with Orthogonal
Reinforcement

The reference punching failure simulation is performed on
a slab similar to the previous one except that the concrete
uniaxial compressive strength is f, = 28.1 MPa, the uniaxial
tensile strength is f; = 3 MPa, and the slab is reinforced with
orthogonal bars 12 mmi in diameter and spacing s = 115 mm,
which are replaced by an equivalent thin steel plate. The per-
centage of reinforcement p—defined as the ratio of the steel
to the effective concrete area—allows us to compute the
equivalent thickness ¢ of this thin steel plate so that

_ 2nrt _t
T 2mwrd d

where d = effective depth of the slab; and r = considered
radius. The percentage of reinforcement of the reference slab
is p = 0.8%, which is replaced by a thin steel plate of thickness
t = pd = 0.8-125 = 1 mm. This equivalent thin steel plate is
modeled with ring and axisymmetric bar elements. The ring
elements have approximately the same spacing as the one of
the orthogonal reinforcement. They are located at the nodes
of the concrete finite-element mesh and have an area that is a
function of this spacing s in the form of #s. The axisymmetric
bar elements are characterized by their thickness, which is
equal to the thickness of the equivalent thin steel plate.

The simulation of punching failure in a slab reinforced with
axisymmetric bar elements by assuming a perfect bond be-
tween concrete and steel leads to many cracked elements at
the interface of the axisymmetric bar elements. The strain lo-
calization along one band of element characterizing punching
failure is not generated due to diffusion of the force from the
steel to the concrete (this diffusion was not observed in the
first simulation, as only ring reinforcements were set). Con-

p 11)
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sequently, the perfect bond condition between concrete and
steel is relaxed.

The proposed method of relaxing the perfect bond condition
and allowing some cracks to grow and others to close involves
fastening the steel reinforcement rigidly to the concrete only
at the extremity of a fictitious fastening length [z This ficti-
tious fastening length is determined by analogy with the crack
spacing observed experimentally during a tensile test in rein-
forced concrete so that the condition

h <lp <25, (12)

is satisfied, where s,, = mean crack spacing in tension; and
h® = finite-element size. The numerical simulation of the ref-
erence slab is performed by assuming a fastening length of 75
mm (the fastening length is approximated due to the irregu-
larity of finite-element mesh) along the axisymmetric bar el-
ements. It should be mentioned that the fastening length is a
material characteristic.

The punching failure in the reference slab is successfully
simulated allowing the parametric analysis to be performed.

Influence of Concrete Characteristics

The concrete parameters, such as the tensile and compres-
sive strengths, are known to be interrelated. However, for the
following parametric analysis, they are considered indepen-
dently in order to determine their effects on the punching fail-
ure process.

The influence of the concrete’s uniaxial tensile strength is
investigated by simulating three slabs with different tensile
strengths (f; = 2.1, 3, and 3.9 MPa). The cracking mechanism
is analogous for the three slabs but the response curves are
distinct as shown in Fig. 5. The behavior of the slab is stiffer
for a high value of tensile strength. The load at which the first
stress-free tangential flexural crack appears (illustrated by a
discontinuity of the response curves) increases with the in-
creasing value of the tensile strength. Once the tangential flex-
ural crack has formed, the slope of the response is similar for
all slabs. The failure occurs first in the slab with the lowest
tensile strength.

The influence of the uniaxial tensile strength on the punch-
ing load (179, 222, and 261 kN) is clearlyidemonstrated. The
result is fitted with simple power functions as they intersect
the origin and are commonly used mathematical expressions.
The best matching is obtained for

Poiie 17 & (13)

where o« expresses the proportionality; and Py,,,. = punching
load.

The uniaxial concrete compressive strength does not influ-
ence the punching failure as neither the cracking mechanism,
nor the response curve, are modified for slabs with different
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FIG. 5. Influence of Concrete Uniaxial Tensile Strength on Re-
sponse



uniaxial compressive strengths: f, = 22.5, 28.1, and 33.7 MPa
(when the tensile strength is held constant). It can be con-
cluded that the punching failure is due to tensile failure of
concrete along the inclined punching crack and is not due to
compressive failure of concrete. The influence of the tensile
strength was already suggested by Moe (1961) who noted that
the punching failure is very often of a splitting type, and that
it is comparable to the type of failure observed in specimens
under tension. Consequently, analytical models that assume a
compressive failure, such as that by Kinnunen and Nylander
(1960), are based on an improbable failure mechanism. They
can, however, approximate failure loads because the tensile
and compressive strengths of concrete are generally interre-
lated.

The influence of concrete fracture energy was investigated
and it was demonstrated that fracture energy does not influence
the stiffness of the behavior, but it influences the ductility as
the maximum displacement is increased with increasing frac-
ture energy. The number of cracks in uniaxial compression (N,
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FIG. 6. Influence of the Percentage of Reinforcement on Re-
sponse

TABLE 1. Influence of Size on the Punching Load and Nominal
Shear Stress

Slab's

h d A diameter Prasure Ta
(mm) (mm) (mm) {mm) (kN) (MPa)
(1) (2 (3 4 (5) (6)

75 60.5 37.5 855 72 2.8
150 121 75 1,710 222 2.15
300 265 150 3,420 737 1.58
450 397 225 5,130 1,370 1.3

log (t,, [MPa])

= 5, 10, and 15), the out-of-roundness parameter (e = 0.52,
0.55, and 0.6), the Young’s modulus (E, = 20,000, 25,000, and
30,000 MPa), and the dilatancy angle at the umaxm} ult{mate
compressive strength (. = 5°, 10°, and 15°) have little influ-
ence on the cracking mechanism and the response curve.

Influence of Reinforcement

The influence of the percentage of reinforcement is studied
by simulating slabs with different percentages: p = 0.2, 0.4,
0.8, 1.2, 1.6, and 2%. A similar cracking mechanism is ob-
served for all these slabs. The corresponding response curves
are presented in Fig. 6 in addition to the one of a flexural
failure generated for a plain concrete slab. After a similar in-
itial elastic behavior, the response of the slabs varied tremen-
dously depending on the percentage of reinforcement. When
the percentage of reinforcement was increased, the value of
the punching load was increased and the ductility was de-
creased. These results are comparable with the experimental
results obtained by Elstner and Hognestad (1956). By increas-
ing the percentage of reinforcement, the state of internal crack-
ing decreases. It should be mentioned that the influence of the
dowel force (shear force transferred by reinforcing bars
crossing a concrete interface) is not considered in the numer-
ical model.

Size Effect

The size effect is investigated by simulating four slabs of
different sizes, but with similar scaling factors applied to the
concrete geometry and the steel area, as summarized in Table
1. Except for these dimensions, the slabs have similar bound-
ary conditions and material characteristics. The finite-element
mesh is refined for large structures to avoid unstable response
as the softening slope is controlled by the finite-element size.
The steel fastening length (/- = 75 mm) is constant from one
slab to another. This implies that the nodes at which the steel
and the concrete are fastened are different from one slab to
another.

The nominal shear stress given in Table 1 is computed as

. Prae (
™ @ + d)d’ \ (14

where the radius of the column is denoted by r,; and d = slab
effective depth. The nominal shear stress decreases with in-
creasing slab thickness illustrating size effect.

)

0.9

strength criterion of Marti and Thurlimann (1977)

=155 f(1+ 4 ) "

— =180 f (14 )

o numerical solution
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FIG. 7. Size-Effect Law Derived from Numerical Simulations
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In assuming a constant fracture energy, BaZant (1984) de-
rived a size-effect law, which was shown to describe the size
effect in punching failure shown by BaZant and Cao (1987).
It is adjusted based on the four slab simulations (without hav-
ing the experimental scatter) following the RILEM (1990) rec-
ommendations (1990) by linear regression, which gives

T, = L55£(1 + d/34)~"? (15)

where f, = uniaxial tensile strength of concrete. This relation
is plotted in Fig. 7, in which the two asymptotes: the horizontal
(strength criterion) and the inclined (linear elastic fracture me-
chanic), are distinguished.

Another adjustment of the size-effect law is accomplished
by forcing the strength criterion given by the upper-bound load
proposed by Marti and Thiirlimann (1977). This leads to the
following size-effect law:

T, = L8f(1 + dr24)™'? (16)

This relation is also plotted in Fig. 7. For both proposed laws,
the effective depth of the slab is divided by a value that is
close to the standard maximal aggregate size of 32 mm.

CONCLUSION

A computational simulation tool has been developed to re-
produce punching failure in reinforced-concrete slabs. The de-
veloped concrete model is able to simulate punching failure in
the following aspects: (1) the different states of stress char-
acterizing punching failure are reproduced with a triaxial fail-
ure criterion; (2) the dilatancy observed experimentally is
matched with a specific flow rule; and (3) the connection be-
tween the brittleness of failure and the state of stress is repro-
duced by introducing a fictitious number of cracks.

The simulation of punching failure in a circular slab rein-
forced with ring reinforcement and the comparison with the
experimental results reveal that the punching mode of failure,
characterized by a localized inclined punching crack, is prop-
erly generated. By studying the failure mechanism, it is shown
that the punching crack is initiated by a microcrack coales-
cence phenomenon inside the slab followed by crack propa-
gation towards the corner of the slab-column intersection.

The parametric analysis of the punching failure reveals that:
(1) punching failure is due to the tensile failure of concrete
along the inclined punching crack and is not due to compres-
sive failure of concrete; (2) the consequence of increasing the
percentage of reinforcement is that the state of internal crack-
ing is decreased and the punching load is raised; and (3) the
size effect observed experimentally is reproduced numerically
and a size-effect law that can be used for design purposes is
adjusted to the numerical results.

The proposed computational tool gives deep insight into the
failure mechanisms and the parameters influencing the punch-
ing failure, which will be useful in design procedures.
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APPENDIX|. DERIVATION OF FLOW RULE

The plastic potential g monitoring the flow rule is expressed
as

g, Iy =1 + BI, + CI, an

The plastic flow direction is the gradient of the plastic potential
so that
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It depends on the deviatoric stress tensor s with a constant
volumetric component. The parameters B and C are deter-
mined so that the dilatancy of the plastic strains observed in
triaxial experiments is reproduced. The following two condi-
tions are satisfied: (1) for the uniaxial tensile test, the flow
direction is equal to the loading path for uniaxial tension (this
condition reproduces the elastic unloading in the radial direc-
tion observed experimentally during a uniaxial tensile test in
plain concrete); (2) at the uniaxial ultimate compressive
strength, the flow direction is given by the dilatancy angle ¥,
introducing a new material parameter. The first condition is
satisfied if the slope of the loading path for uniaxial tension
/1, = 1/\/5) equals the flow direction at the ultimate uniaxial
tensile strength point (J; = f,f\/i, I, = V2/3f, I = 0). The
slope of the flow direction is derived from equation 18 by
expressing the invariants: Jy(m) = C and /,(m) = 21, + B so
that the first condition gives

_—_—— = 1
I, 2, + B \2 )

This condition must be valid at the uniaxial tensile strength
point, leading to

2 1
Wf,+%B=C 20)

The second condition states that at the uniaxial ultimate com-
pressive strength point, (I, = —£./\/3, I, = \/2/3f,, I, = ©/3),
the flow direction is given by the dilatancy angle .. This
second condition is expressed as tan s, = /I, and introducing
the invariants of the flow rule leads to

2V/2
V3

Combining 20 and 21 leads to

_2V2tan o f, — f) 1 2
VAN -y CoNRETIBE @2

The parameter B must remain strictly positive which implies
that

tan . f, + tan y.B=C 1)

arctan (\/f;-,ﬂ) <\, < arctan %}2 =~ 35.3° (24)

for f,/f, = 10 this condition reads: 4° < s, < 35.3°
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APPENDIX lIl. NOTATION

The following symbols are used in this paper:

B, C
Ey, E

parameters of the concrete plastic potential;
initial and damaged Young’s modulus of concrete;

G, = fracture energy;
I, I, I, = hydrostatic, deviatoric invariants, and polar angle of
Haigh-Westergaard;
N = fictitious number of cracks;
N, = number of fictitious cracks in uniaxial compression;
P = vertical force on a slab;
¢ = cohesive parameter;
d = slab effective depth;
e = out-of-roundness parameter;
Jf = failure criterion;
Je» fi = uniaxial compressive, tensile strength of concrete;
g = plastic potential;
h® = finite-element size;
lr = fastening length between concrete and reinforcement;
r(l,, e) = elliptic function;
r, = radius of the column;
s = deviatoric stress tensor;
s, S, = reinforcement spacing, mean crack spacing;
t = thickness of steel plate;
w = crack opening;
Ay = plastic multiplier;
€, O = strain, stress tensor;
¢ = friction parameter;
Y, = dilatancy angle at the ultimate uniaxial compressive
strength;
p = percentage of reinforcement; and
T, = nominal stress.
Subscripts
¢ = crack;
e = elastic;
p = plastic;
r = at rupture; and
t = traction,
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